

4th DECISION GA Meeting

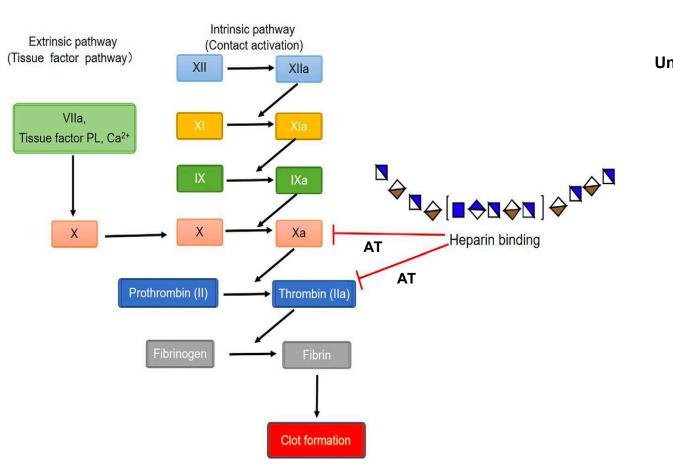
Madrid, 18-21 Oct 2022

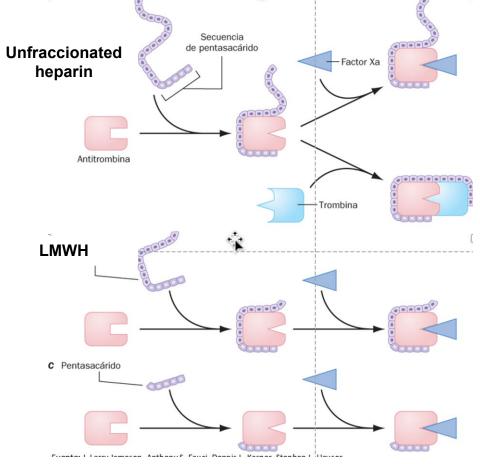
Keynote

Overview of the effects of LMWH in cirrhosis

Agustín Albillos Martínez

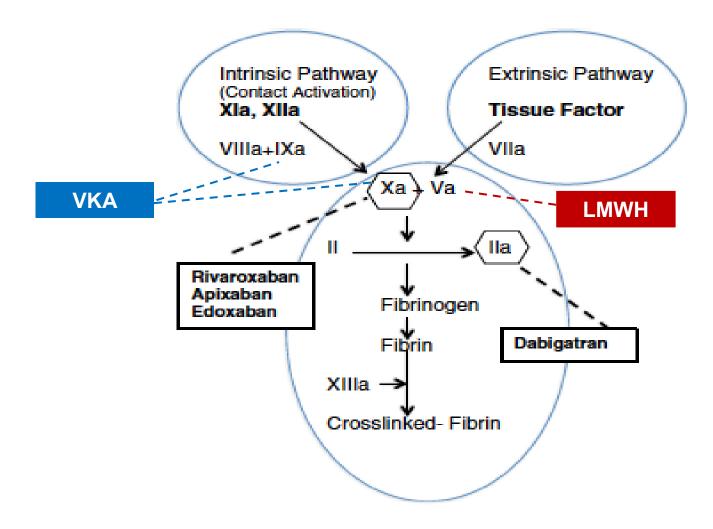
Hospital Universitario Ramón y Cajal Universidad de Alcalá Madrid




Agenda

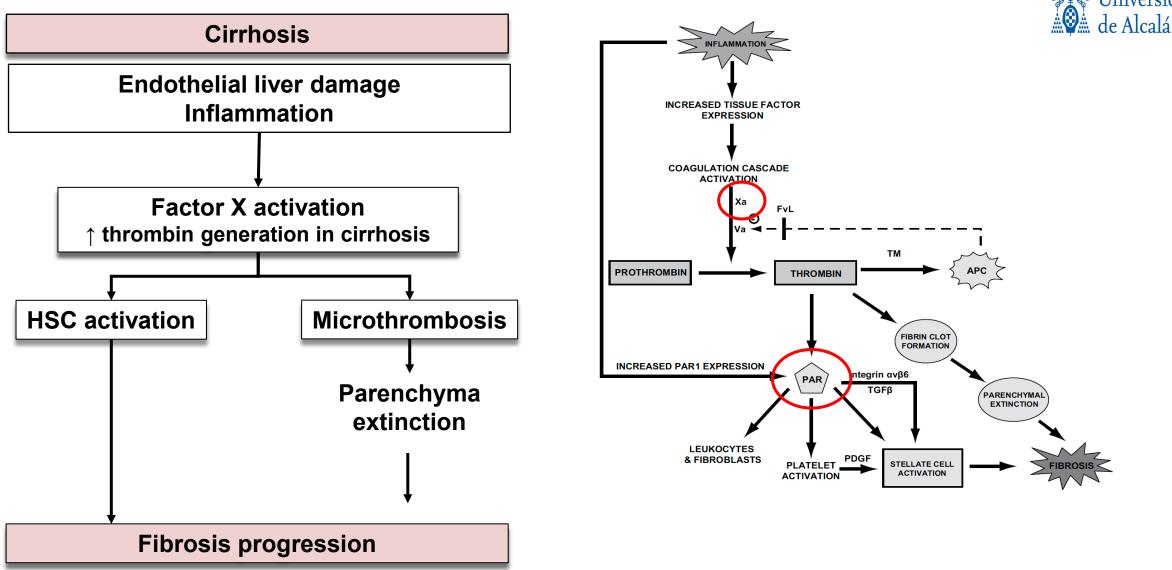
- Mechanism of action of anticoagulants
- Pathophysiological basis for long-term AG in cirrhosis
- Anticoagulation in portal vein thrombosis
- Anticoagulation improves survival in cirrhosis?

Mechanism of action of heparin


Harrison's, 2021

Role of heparin and related binding proteins

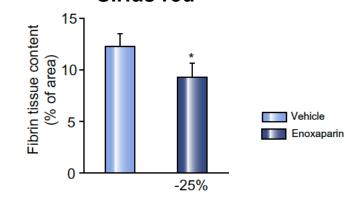
Coagulation pathway	Factors IIa (thrombin), IXa, and Xa		
	Antithrombin (AT)		
	Protein C inhibitor		
Inflammation	Platelet growth factor 4, PGF4		
	Interleukin 8, IL-8		
	Stromal-derived factor 1a		
	Neutrophil elastase		
	P-selectin, L-selectin		
` □	CD11b/CD18 (MAC1, macrophage 1)		
	Platelet factor 4		
	ECP, eosinophil cationic protein; MBP, major basic protein		
Growth factor	Fibroblast growth factors (FGFs)		
binding and signaling	Endothelial growth factors (EGFs)		
	Platelet derived growth factors (PDGFs)		
Angiogenesis	VEGF-A		
	Angiopoietins/angiogenin		
	Midkine/pleiotrophin		
	Platelet-derived growth factor (PDGF)		
	Heparin-binding EGF-like growth factor (HB-EGF)		
	Angiomodulin (AGM/TAF/mac25)		


Mechanism of action of anticoagulants

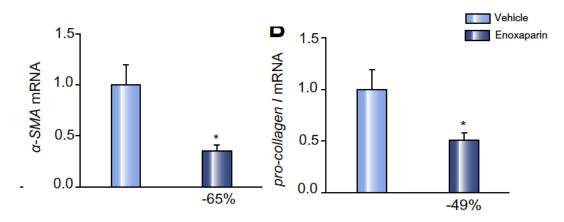
Inflammation, microthrombosis and cirrhosis progression

* Protease activated receptors (PAR)

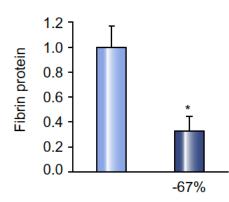
IR Wanless et al. Hepatology 1995 Q Anstee et al. Clin Liver Dis 2009


Chronic enoxaparin in rats with cirrhosis

CCI₄-cirrhotic rats Enoxaparin 1.8 mg/kg.d sc, 2 wk


Splanchnic hemodynamics

Variable	Vehicle n = 7	Enoxaparin n = 5	<i>p</i> value
PP (mmHg)	12.1 ± 1.8	10.2 ± 0.5	0.04
MAP (mmHg)	105 ± 15	110 ± 31	0.7
PBF (ml/min)	11.9 ± 2.9	16.9 ± 4.7	0.04
HVR (mmHg/ml/min ⁻¹)	1.1 ± 0.3	0.6 ± 0.2	0.02
HR (beats/min)	347 ± 40	394 ± 54	0.11


Liver fibrosis Sirius red

HSC activation

Fibrin

Similar results in TAA-cirrhotic rats

F Cerini et al. JHEP 2016

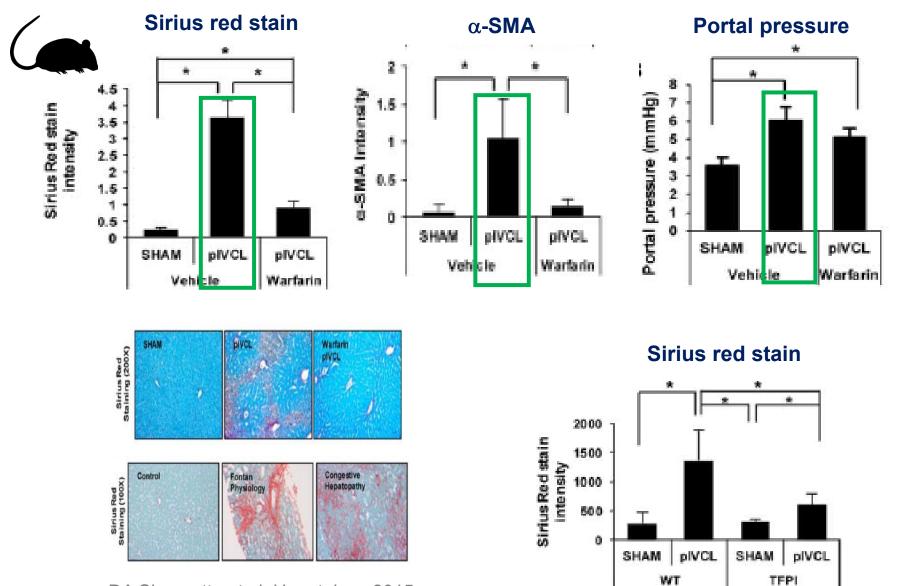
DIGESTIVO

RAMON Y CAJAL MADRID

Universidad

de Alcalá

Chronic rivaroxaban in rats with cirrhosis

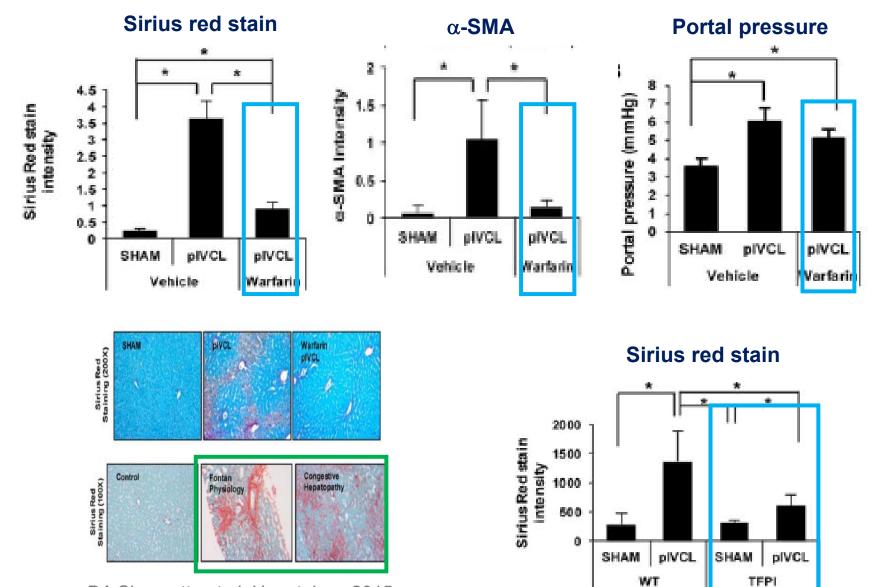


CCI₄-cirrhotic rats Rivaroxaban 20 mg/kg.d, 2 wks

- ↓ **portal pressure** -16%, ↓ hepatic vascular resistance
- **hydroxyproline content** and collagen protein expression Unchanged liver fibrosis
- **Deactivation of HSC** (↓ SMA, ↓ pro-collagen-I expression)
- \downarrow fibrin deposition

Similar results in TAA-cirrhotic rats

Sinusoidal thrombosis and mechanical forces drive hepatic fibrogenesis in chronic passive hepatic congestion


DA Simonetto et al. Hepatology 2015

DIGESTIVO

RAMON Y CAJAL MADRID

Sinusoidal thrombosis and mechanical forces drive hepatic fibrogenesis in chronic passive hepatic congestion

DA Simonetto et al. Hepatology 2015

DIGESTIVO

RAMON Y CAJAL MADRID

Agenda

- Mechanism of action of anticoagulants
- Pathophysiological basis for long-term AG in cirrhosis
- Anticoagulation in portal vein thrombosis
- Anticoagulation improves survival in cirrhosis?

Questions

Question 1

Should all patients with cirrhosis and recent (<6 m) complete or >50% PVT receive anticoagulation?

Question 2

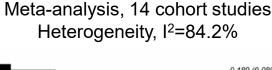
Is anticoagulation a life commitment in patients with cirrhosis and PVT independently of achieving recanalization?

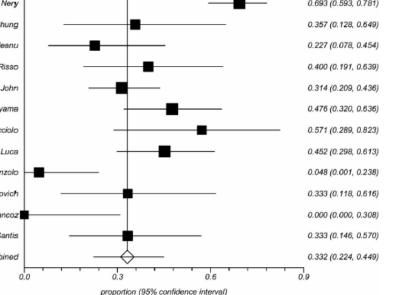
Anticoagulation of portal vein thrombosis in cirrhosis

CONS

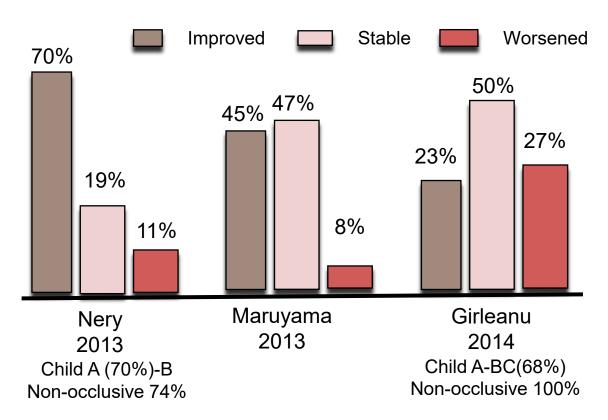
- PVT <50%: mostly transient
- Hepatic decompensation and death: independent of PVT
- Risks of AG

PROS


- Benefit of AG in recanalization and progression
- Benefit of AG in outcomes and survival?
- Low risks of AG


"Transient" portal vein thrombosis in cirrhosis

Heterogeneity, I²=84.2% Hidaka 0.189 (0.080, 0.352) 0.250 (0.073, 0.524) Chen Nery 0.693 (0.593, 0.781) 0.357 (0.128, 0.649) Chung Girleanu 0.227 (0.078, 0.454) Risso 0.400 (0.191, 0.639) 0.314 (0.209, 0.436) John 0.476 (0.320, 0.636) Maruyama Caracciolo 0.571 (0.289, 0.823) 0.452 (0.298, 0.613) Luca Senzolo 0.048 (0.001, 0.238) 0.333 (0.118, 0.616) Garcovich 0.000 (0.000, 0.308) Francoz 0.333 (0.146, 0.570) De Santis combined 0.332 (0.224, 0.449) 0.6 0.0 0.3 0.9 proportion (95% confidence interval)


39.8% (95%CI 35-44)

X Qi et al. BMC Medicine 2018

 \sim 70% of PVT are non-occlusive

Trends for

spontaneous recanalization:

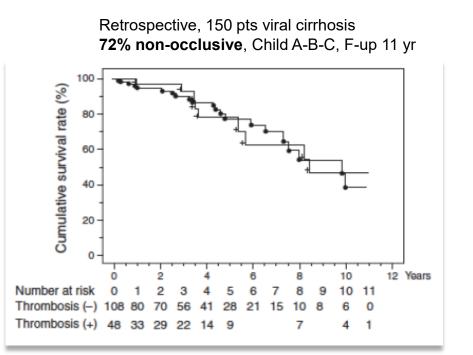
- Degree of venous occlusion (non-occlusive <50%)
- Severity of cirrhosis (Child A)

Weak evidence

Impact of portal vein thrombosis in cirrhosis progression and survival

Hepatic decompensation

Longitudinal prospective, 1243 pts, US q. 6 mths **86% non-occlusive**, Child A-B


	Univariate Models Unadjusted Estimates			Multivariate Models Adjusted for the Baseline Prognostic Variables*		
Models		HR	95% Cl	Р	HR	95% CI
Liver disease progression						
- Partial PVT	1.58	1.02-2.45	0.04	1.51	0.73-3.14	0.27
- Partial or Complete PVT Decompensation	1.48	0.97-2.26	0.067	1.32	0.68-2.55	0.41
- Partial PVT - Partial or Complete PVT	1.77 1.61	1.07-2.92 0.98-2.62	0.027 0.058	1.60 1.37	0.69-3.74 0.62-3.03	0.28 0.44

F Nery et al. Hepatology. 2014

Hepatic decompensation and death are **independent** of PVT in prospective observational studies

- US based study, 12-month f-up (2000-2006) (Nery et al.)
- US based study, 29-month f-up (2014-2019) (C Noronha et al. Liv Int 2019)
- CT based study, 24-month f-up (2014-2019) (A Luca et al. Radiology 2012)

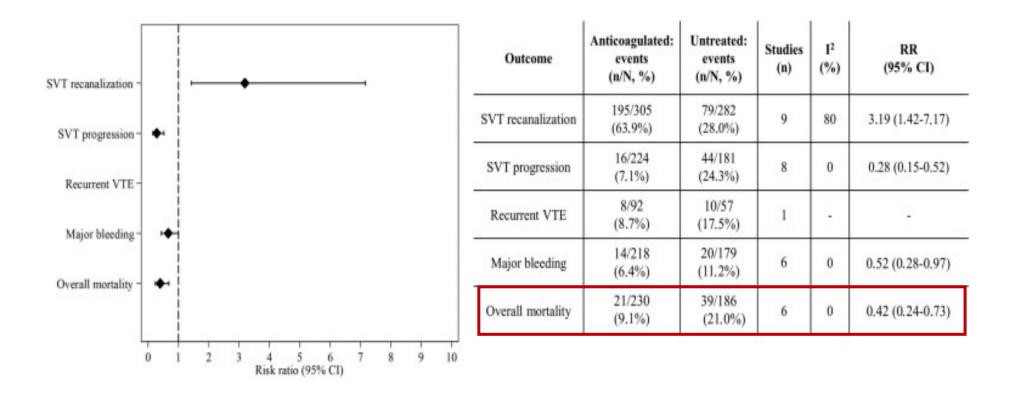
Survival

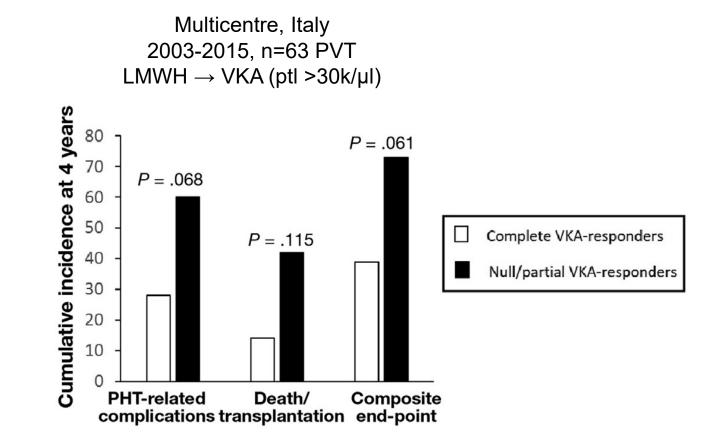
H Maruyama et al. AJG 2013

Series of anticoagulation for portal vein thrombosis in cirrhosis

Author	Study type	Patients	Anticoagulation	Duration (months)	Recanalization (months)
Francoz, 2005	Prospective	19	LMWH→VKA	8	CR 42%
Delgado, 2012	Retrospective	55	LMWH, LMWH→VKA, VKA	7	CR/PR 60%
Senzolo, 2012	Prospectivo	35	HBPM	6	CR 36%, PR 27%
Chen, 2016	Retrospective	30	VKA	8	CR/PR 68%
Wang, 2916	Prospective	31	VKA	12	CR/PR 100%
Hanafy, 2018	Prospective	80	VKA, rivaroxaban	6	CR/PR 45, 85%
Artaza, 2018	Retrospective	32	LMWH, VKA	13	CR 53%, PR 19%
Pettinari, 2018	Retrospective	81	LMWH, VKA	12	CR/PR 57%
Scheiner, 2018	Retrospective	22	LMWH→VKA	12	-
Ferreira, 2019	Retrospective	37	LMWH, VKA	25	CR/PR 58%
Naymagon, 2020	Retrospective	60	LMWH, VKA , DOAC	19	CR 38, 58, 55%
Florescu, 2021	Retro- prospective	54	LMWH, LMWH→VKA	-	CR/PR 55%

Anticoagulation for portal vein thrombosis in cirrhosis


Meta-analysis, 26 studies, 1475 patients, -2019


Anticoagulation for portal vein thrombosis in cirrhosis

Meta-analysis, 26 studies, 1475 patients, -2019

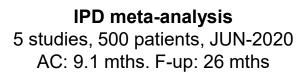
Recurrence of portal vein thombosis after stopping anticoagulation

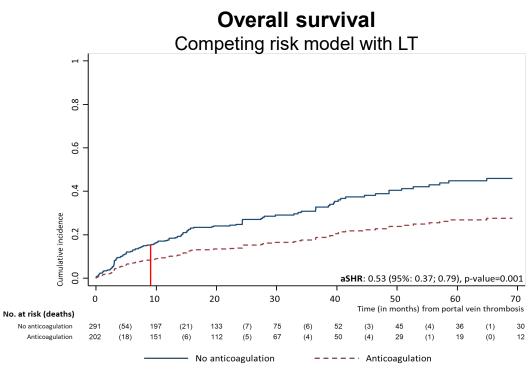
Recurrence of PVT after recanalization and stopping anticoagulation:

Meta-analysis of 9 studies

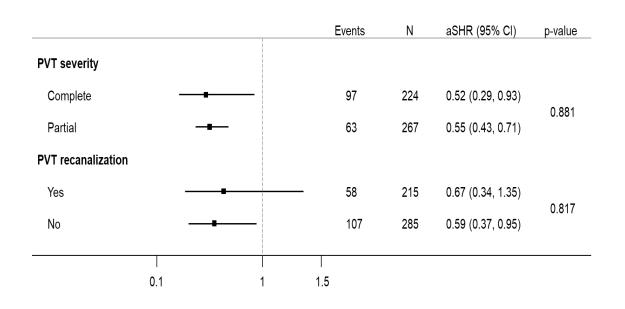
Pooled rate **46.7%** (95% CI 37.7–69.3%)

I2 = 36%; P = 0.1306


Le Wang et al. Adv Ther 2021

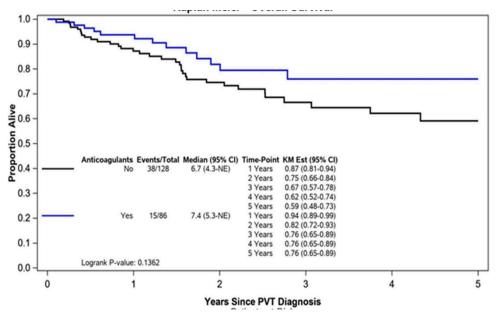

Author	Number of patients*	Recurrence (%)	Mean time (months)
Delgado, CGH 2018	13	5 18%	1.3
Pettinary, AJG 2018	46	7 36%	-
Naymagon, DDS 2020	24	7 29%	9.2

* AC&recanalization \rightarrow AC discontinued

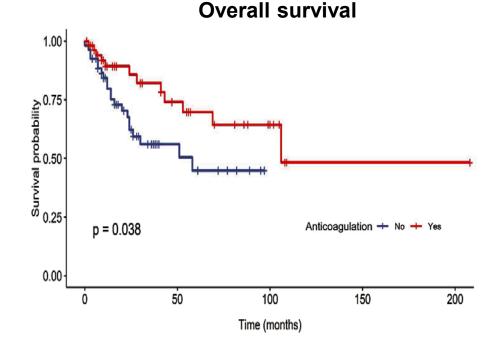


Overall survival in patients anticoagulated for portal vein thrombosis in cirrhosis

Sub-hazard ratio adjusted (**aSHR**) by age at diagnosis, etiology, Child, thrombosis extension and localization and variceal prophylaxis

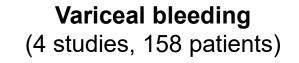


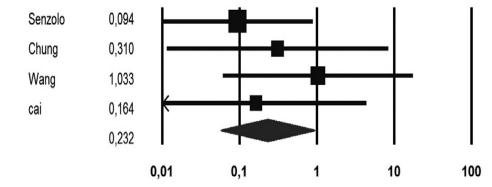
A Guerrero et al. Submitted


Overall survival in patients anticoagulated for portal vein thrombosis in cirrhosis

Single center study, 214 patients, **86 AC**/128 no-AC **Non-occlusive 70%.** AC: 18.8 mths F-up: 27 mths

Single center study, 107 patients, **54 AC**/53 no-AC **Non-occlusive 83%.** AC until death or LT F-up: 32 mths


L Naymagon et al. DDS 2020


M Florescu et al. JGLD 2021

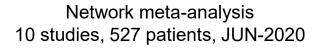
Risks of anticoagulation in portal vein thrombosis in cirrhosis

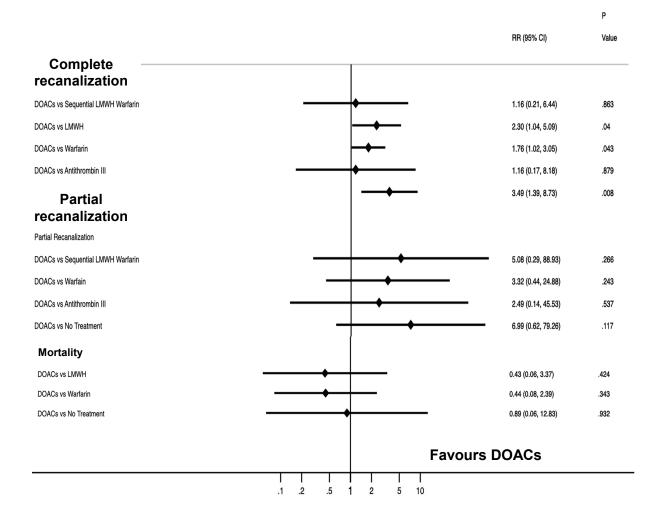
Favours anticoagulant treatment Favours no treatment

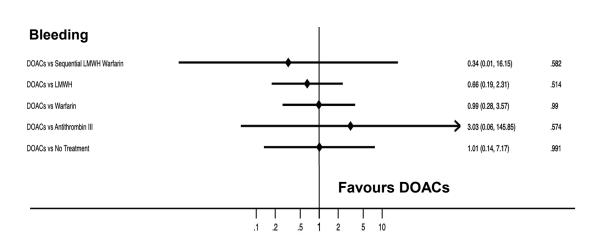
OR 0.23 (0.05, 0.93) Treated vs untreated 2 vs. 12%

Any bleeding

(6 studies, 257 patients)


Treated vs untreated 11 vs. 11%


Study-Level Factors	Pooled OR Over Subgroup	95% CI	Ρ
Duration of	1264	0.986-1.620	206
anticoagulation (per mo) Type of anticoagulation			
LMWH (vs untreated)	0.103	0.040-0.264	.041
Warfarin (vs untreated)	0.713	0.318-1.600	.499
Warfarin (vs LMWH)	6.925	2.002-23.952	.0924
Warfarin (vs LMWH),	4.368	0.158-119.78	.545
adjusted by study			
design Study design			
R (vs P)	6.476	1.284-32.661	.152

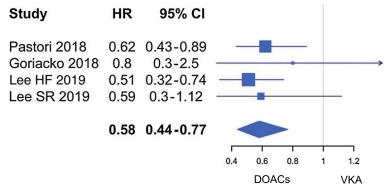

Variceal Bleeding

L Loffredo et al. Gastroenterology 2019

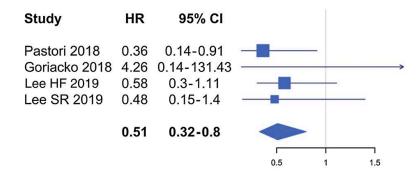
Efficacy and safely of DOACs in portal vein thrombosis in cirrhosis

Universidad de Alcalá

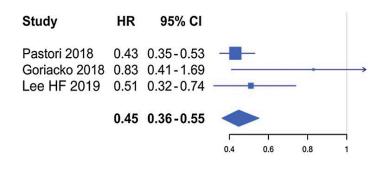
DIGESTIVO

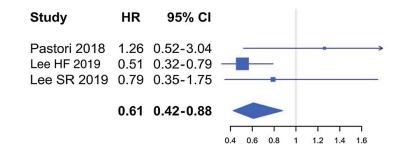

CH Ng et al. Hepatol Int 2021

Safety of DOACs in patients with "advanced" liver disease (significant fibrosis and cirrhosis)



Meta-analysis, 4 studies, 3843 patients, AF and advanced liver disease 1547 VKA, 1936 DOACs


Major bleeding


Intracraneal hemorrhage

All bleeding

GI bleeding

F Violi et al. Hepatol Commun 2020

Questions and recommendations

Question 1

Should all patients with cirrhosis and recent (<6 m) complete or >50% PVT receive anticoagulation?

Recommendation

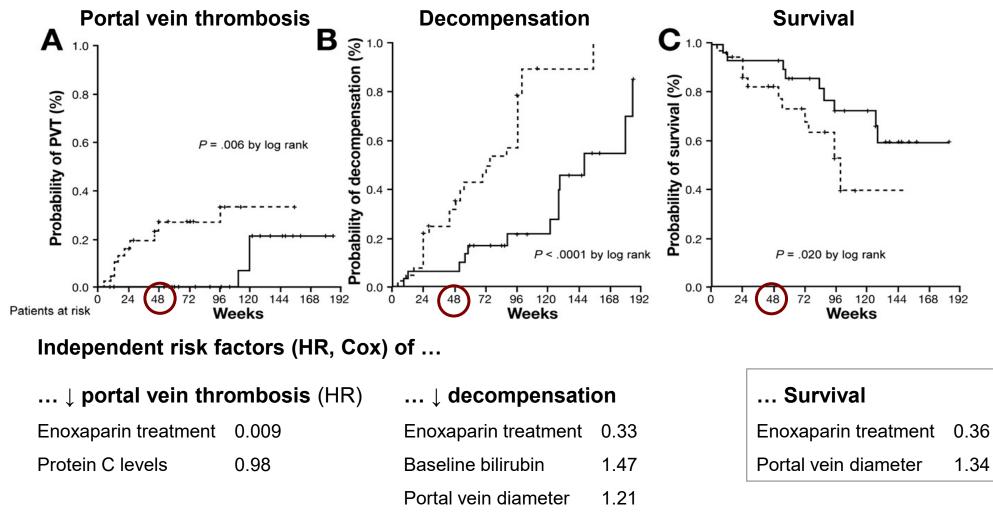
Anticoagulation recommended in patients with cirrhosis and recent PVT trombosis that compromises at least 50% PV lumen

Question 2

Is anticoagulation a life commitment in patients with cirrhosis and PVT independently of achieving recanalization?

Recommendation

In non-LT candidates, individualize prolonging anticoagulation beyond recanalization, considering risk of recurrence and potential survival beneft



Agenda

- Mechanism of action of anticoagulants
- Pathophysiological basis for long-term AG in cirrhosis
- Anticoagulation in portal vein thrombosis
- Anticoagulation improves survival in cirrhosis?

Enoxaparin prevents portal vein thrombosis and liver decompensation in advanced cirrhosis

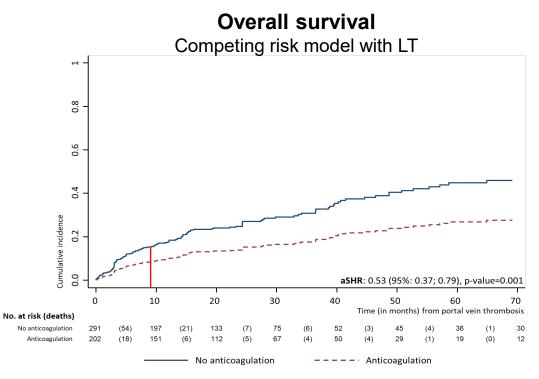
70 patients with Child B7-C10 cirrhosis Enoxaparin 4000 U (**40 mg**)/24 h sc for 48 wks *vs*. No treatment

Encephalopathy

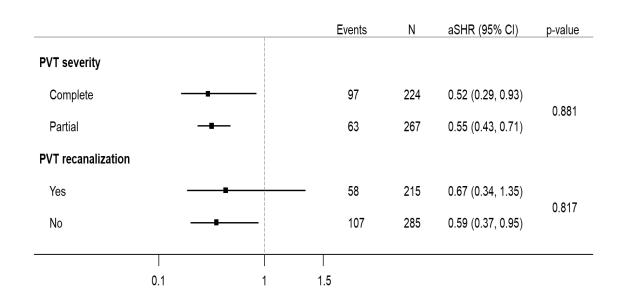
3.19

E Villa et al. Gastroenterology 2012

DIGESTIVO RAMON Y CAJAL

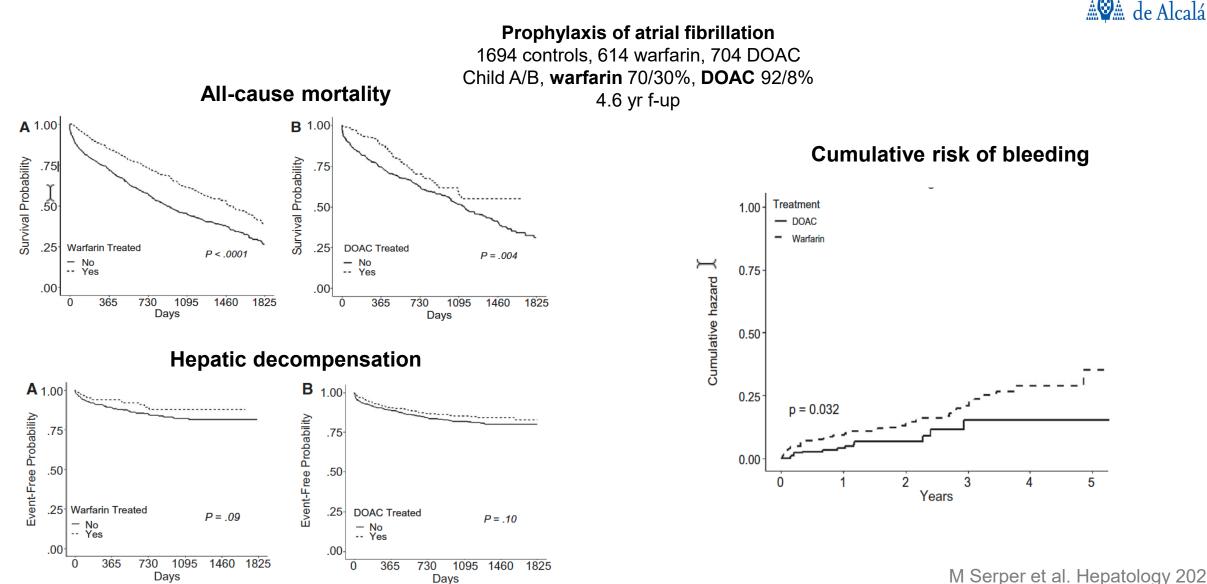

MADRID

de Alcalá


Universidad

Overall survival in patients anticoagulated for portal vein thrombosis in cirrhosis

IPD meta-analysis 5 studies, 500 patients, JUN-2020 AC: 9.1 mths. F-up: 26 mths


Sub-hazard ratio adjusted (**aSHR**) by age at diagnosis, etiology, Child, thrombosis extension and localization and variceal prophylaxis

A Guerrero et al. Submitted

Safety of DOACs in patients with Child A/B cirrhosis

M Serper et al. Hepatology 2021

DIGESTIVO **RAMON Y CAJAL** MADRID

Universidad

Conclusions

- Micro-thrombosis of the cirrhotic liver might contribute to cirrhosis progression
- Potential benefit of long-term anticoagulation on hepatic decompensation and survival in cirrhosis

Anticoagulant of choice

• LMWH:

- activates AT to inhibit factor Xa
- half-life ~4h, dose-independent elimination
- renal excretion
- but injection, 90% biodisponibility
- VKA:
 - oral administration
 - unreliability of INR in cirrhosis

• DOACS

- oral administration
- greater efficacy and safety than VKA
- *but* contraindicated in advanced cirrhosis